7.3 Volumes by Revolution

Ex 1) Revolve $y = \sqrt{x}$ around the x-axis, $0 \le x \le 5$. Find the volume of the solid.

Disks/Washers

area of disk: Tr2

The region between the graph of $f(x) = 2 + x \cos x$ and the x-axis over the interval [-2, 2] is revolved about the x-axis to generate a solid. Find the volume of the solid.

Figure 7.18 The region in Example 2.

Figure 7.19 The region in Figure 7.18 is revolved about the *x*-axis to generate a solid. A typical cross section is circular, with radius $f(x) = 2 + x \cos x$. (Example 2)

EXAMPLE 3 Washer Cross Sections

The region in the first quadrant enclosed by the y-axis and the graphs of $y = \cos x$ and $y = \sin x$ is revolved about the x-axis to form a solid. Find its volume.

Figure 7.20 The region in Example 3.

A of washer:
$$\pi R^2 - \pi r^2$$

Figure 7.22 The area of a washer is

 $A = \pi r^2$. (Example 3)

Figure 7.22 The area of a washer is

 $A = \pi r^2$. (Example 3)

 $A = \pi r^2$. (Example 3)

TRY: The region enclosed by the graphs of y = 2x, y = x, and x = 1 is revolved around the x-axis to form a solid. Find the volume.

